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A second-order-accurate finite difference discretization of the incompressible
Navier–Stokes is presented that discretely conserves mass, momentum, and kinetic
energy (in the inviscid limit) in space and time. The method is thus completely free of
numerical dissipation and potentially well suited to the direct numerical simulation
or large-eddy simulation of turbulent flow. The method uses a staggered arrangement
of velocity and pressure on a structured Cartesian grid and retains its discrete con-
servation properties for both uniform and nonuniform gird spacing. The predicted
conservation properties are confirmed by inviscid simulations on both uniform and
nonuniform grids. The capability of the method to resolve turbulent flow is demon-
strated by repeating the turbulent channel flow simulations of H. Choi and P. Moin
(1994, J. Comput. Phys. 113, 1), where the effect of computational time step on
the computed turbulence was investigated. The present fully conservative scheme
achieved turbulent flow solutions over the entire range of computational time steps
investigated (�t+ = �tu2

τ /ν = 0.4 to 5.0). Little variation in statistical turbulence
quantities was observed up to �t+ = 1.6. The present results differ significantly
from those reported by Choi and Moin, who observed significant discrepancies in
the turbulence statistics above �t+ = 0.4 and the complete laminarization of the flow
at and above �t+ = 1.6. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent
flow require accurate numerical methods to resolve the wide range of spatial and temporal
scales inherent to turbulence. Experience has shown that it is not only the order of accuracy

117

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.



118 HAM, LIEN, AND STRONG

of the discrete approximation that determines the overall accuracy of a given method. Of
equal or perhaps even greater importance are the discrete conservation properties of the
method. Numerical schemes with good discrete conservation properties in terms of mass,
momentum, and kinetic energy have been shown to produce superior results when compared
to their nonconservative counterparts [2].

In a recent investigation, Morinishi et al. [3] analyzed several finite difference schemes
for their conservation properties and derived discretely conservative fourth-order schemes
for uniform meshes. The schemes were extended to nonuniform meshes by Vasilyev [4],
although the simultaneous discrete conservation of mass, momentum, and kinetic en-
ergy was not possible. Only schemes that discretely conserved mass and momentum but
not kinetic energy or discretely conserved mass and kinetic energy but not momentum
could be developed. This was true even for second-order-accurate schemes on nonuni-
form meshes. Vasilyev identified the source of the nonconservation as the commutation
error between the discrete differencing and averaging operators on the nonuniform
mesh.

The concept of discrete conservation can be applied to time as well as space. Morinishi
et al. did not, however, consider discrete conservation in time as an analytical requirement for
a proper set of discretization equations. In the analyses of both Morinishi et al. and Vasilyev,
time advancement was accomplished by a third-order Runge–Kutta time-stepping method.
The authors justified the nonconservation by observing that the associated errors appeared
to be dissipative and decreased with the cube of the computational time step. The recent
work of Perot [5] on two-dimensional unstructured staggered schemes extends the discrete
conservation analysis to include time.

The objective of the present work is to develop a second-order-accurate finite difference
scheme for structured nonuniform Cartesian meshes that discretely conserve mass, momen-
tum, and kinetic energy in both space and time and then test its suitability for DNS. To our
knowledge, this is the first fully conservative scheme for nonuniform meshes reported in the
literature; although we thank a reviewer for bringing to our attention the work of Kajishima
[6], who already proposed some elements of the scheme.

The rest of the paper is organized as follows. In Section 2, the concepts of differential and
discrete conservation are reviewed. In Section 3, the discrete equations for incompressible
flow are presented and their conservation properties derived. In Section 4, the predicted con-
servation properties are confirmed by inviscid simulations on both uniform and nonuniform
grids. Section 4 also includes several “thought” experiments that investigate the computed
energy spectra for the inviscid simulations and the reversibility of the scheme in the inviscid
limit. In Section 5, the method is applied to the DNS of turbulent plane channel flow to
investigate the effect of the computational time step on the computed turbulence. Section 6
presents a summary.

2. CONSERVATION PRINCIPLES

Requiring discrete conservation as an additional constraint for a proper set of discretiza-
tion equations is an effort to enforce a discrete analogue to the fundamental conservation
properties of the governing partial differential equations. In this section, the analytic state-
ments of conservation are reviewed for a fully conservative governing equation, and the
analogous discrete statements are developed.
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2.1. Differential Conservation

Consider the following governing equation for the scalar quantity φ,

∂φ

∂t
+ ∂ Fj (φ)

∂x j
= 0, (1)

where Fj is commonly called the flux of φ, and summation is implied over repeated indices.
The form of Eq. (1) has alternately been referred to as the fully conservative form or the
strongly conservative form. Its conservation properties can be illustrated by integrating over
field V , ∫

V

(
∂φ

∂t
+ ∂ Fj (φ)

∂x j

)
dV = 0. (2)

Assuming V �= V (t) and applying Gauss’ divergence theorem to the divergence yields

∂

∂t

∫
V

φ dV +
∫

S
Fj (φ)n j d S = 0, (3)

where S is the surface surrounding volume V , and n j is the outward surface normal. When
V is a control volume (CV), Eq. (3) can be seen as a statement of local conservation—a
balance between the rate of change of the amount of φ inside the CV and the net flux through
the boundary. Alternatively, when V is the entire problem domain, Eq. (3) can be seen as a
statement of global conservation.

Consider the case when V is a periodic field, free from the potential sources and sinks
introduced by boundaries. In this case, the net flux through the boundary is zero, and Eq. (3)
can be simplified to ∫

V
φ dV = constant. (4)

Equation (4) simply states that, in the absence of boundaries, the total amount of φ is
conserved. Now consider the specific case of the Navier–Stokes equations.

For incompressible flow, the governing Navier–Stokes equations can be written as

∂ui

∂xi
= 0, (5)

∂ui

∂t
+ ∂uj ui

∂x j
+ ∂p

∂xi
− ∂τi j

∂x j
= 0, (6)

where ui is the velocity vector, p is the pressure divided by the constant density, and τi j

is the viscous stress. Here the convective term is reported in divergence form. Written as
such, both the mass and momentum equations are fully conservative.

The governing equation for the kinetic energy, K = ui ui/2, can be developed by taking
the vector dot product of the velocity and the momentum equation,

ui

(
∂ui

∂t
+ ∂u j ui

∂x j
+ ∂p

∂xi
− ∂τi j

∂x j

)
= 0. (7)
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Multiply by ui and consider each of the four resulting terms,

(Time) = ui
∂ui

∂t
, (8)

= ∂ui ui/2

∂t
, (9)

(Conv.) = ui
∂u j ui

∂x j
, (10)

= ∂u j ui ui/2

∂x j
+ 1

2
ui ui

∂u j

∂x j
, (11)

(Pres.) = ui
∂p

∂xi
, (12)

= ∂ui p

∂xi
− p

∂ui

∂xi
, (13)

(Visc.) = −ui
∂τi j

∂x j
, (14)

= −∂u jτi j

∂x j
+ τi j

∂ui

∂x j
. (15)

With the exception of the second part of the viscous term, which represents the kinetic energy
dissipation, all terms are either in conservative form or involve the continuity equation,
which is identically zero. Thus the kinetic energy equation, in the inviscid limit, is also fully
conservative.

It is this inherently conservative nature of mass, momentum, and kinetic energy (in the
inviscid limit) at the differential level that motivates our desire to impose discrete analogues
on the discretized system.

2.2. Discrete Conservation

There are a variety of discretization techniques available for developing discrete ap-
proximations to a set of governing partial differential equations such as the Navier–Stokes
equations. The finite volume method would seem a logical choice in this case because it is
inherently conservative. A conservative finite volume discretization of momentum will not,
however, guarantee conservation of kinetic energy. Because the discrete system is already
fully defined through the mass and momentum discretizations, discrete conservation of ki-
netic energy depends implicitly on the discrete operators selected and the order in which
they are applied. In the present work we use the finite difference method to develop the
discretization equations mainly because of the mathematical tools for discrete conservation
analysis that have been developed to date.

Morinishi et al. [3] introduced several discrete operators to investigate the conservation
properties of various finite difference schemes. By extending the notation of Morinishi to
include time, we define the following discrete differencing operator for structured Cartesian
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grids with nonuniform spacing:

δ1φ

δ1x

∣∣∣∣
i, j,k,n

≡ φn
i+1/2, j,k − φn

i−1/2, j,k

xi+1/2 − xi−1/2
. (16)

In the above definition, φ represents a discrete variable and [i, j, k, n] its associated mesh
indices in the x , y, z, and t directions respectively (not to be confused with Cartesian
tensor indices). Although the stencil size used throughout the present analysis is always
1 (indicated by the “1” subscript), it is retained for consistency with the more general
Morinishi definitions. Discrete operators in the y, z (alternatively x2, x3), and t directions
are similarly defined.

Using this differencing operator, we make the following statement and then endeavor to
prove it: A discretization equation discretely conserves the scalar φ in space and time when
it can be written in the form

δ1φ

δ1t
+ δ1 Fj (φ)

δ1x j
= 0. (17)

Fj (φ) in this case is a discrete approximation for the flux (its exact form is not important
here). The discrete conservation properties can be illustrated by considering a number of
CVs that together form volume V . Taking the sum of discrete equations multiplied by their
respective volume �V is the discrete analogue of the integration performed in Eq. (2),

∑
V

(
δ1φ

δ1t
+ δ1 Fj (φ)

δ1x j

)
�V = 0. (18)

Because the time difference commutes with the summation and all internal fluxes cancel,
leaving only those on the surface S, Eq. (18) can be rewritten as

δ1

δ1t

(∑
V

φ �V

)
+
∑

S

Fj (φ)n j�S = 0. (19)

Equation (19) is a discrete analogue of Eq. (3) and represents a similar statement of con-
servation in a discrete sense. Note also that when V is a periodic field, the summation of
surface fluxes goes to zero, and Eq. (19) can be simplified to∑

V

φn�V =
∑

V

φn+1�V = constant, (20)

which is a discrete analogue of Eq. (4).
In summary, any discretization equation that can be expressed in the form of Eq. (18)

discretely conserves the scalar φ in space and time.

3. NUMERICAL METHOD

The numerical method of the present contribution is based on a second-order-accurate dis-
cretization of the incompressible Navier–Stokes equations for structured Cartesian meshes
with nonuniform spacing and a staggered arrangement of velocity and pressure. In the
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FIG. 1. Staggered variable arrangement in (a) space and (b) space/time.

following subsections, the staggered variable arrangement is described in both space and
time, several discrete averaging operators and identities are introduced, the conservative
discretization equations are presented and analyzed, and the accuracy of the method is con-
sidered. An efficient solution technique for the resulting fully implicit, nonlinear system is
also briefly described.

3.1. Staggered Variable Arrangement

The staggered arrangement of velocity and pressure, originally by Harlow and Welch [7],
has the advantage of ensuring strong coupling between velocity and pressure without requir-
ing special interpolation techniques. Staggering also appears necessary to produce discrete
methods with good conservation properties, and as such it forms the basis of the present
scheme.

On the staggered grid, pressure p is stored at the CV centers and denoted by the integer
subscripts [i, j, k]. The Cartesian velocity components u, v, and w are stored at the center
of the east, north, and top CV faces respectively. Their staggered location relative to the CV
center is denoted by an appropriate half-index shift, as shown in Fig. 1a.

Vasilyev points out that, on nonuniform meshes, the locations of the velocity and pressure
points are somewhat ambiguous; they can be determined as the geometric volume and face
centers in either physical or computational space. In the present work we choose physical
space and define the mesh in terms of the face locations. For example, the west face of the
CV at [i, j, k] is at xi−1/2, and the east face at xi+1/2. The x location of the cell center can
then be calculated as the simple average of the adjacent face coordinates,

xi = 1

2

(
xi−1/2 + xi+1/2

)
. (21)

The y and z directions are handled similarly.
Because the present work also considers conservation in time, we append the superscript

n to all discrete variables to denote their time levels. Figure 1b illustrates how the velocity
and pressure locations are also staggered in time. We adopt the convention that the new
velocity values in any time step are at time level tn+1 and the previous values at tn . Pressure
is then located at the midpoint between these time levels, tn+1/2.
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3.2. Additional Discrete Operators and Identities

In addition to the discrete differencing operator defined by Eq. (16), the following aver-
aging operators will be required to develop and analyze the conservative discretization:

φ̄1x |i, j,k,n ≡ φn
i+1/2, j,k + φn

i−1/2, j,k

2
, (22)

φ̃ψ
1x |i, j,k,n ≡ 1

2

(
φn

i+1/2, j,kψ
n
i−1/2, j,k + φn

i−1/2, j,kψ
n
i+1/2, j,k

)
. (23)

In the above definitions, φ and ψ represent discrete variables tha may be cell-centered
or staggered, and [i, j, k, n] are the associated indices in the x , y, z, and t directions
respectively. Discrete operators in the y, z, and t directions are similarly defined.

Unfortunately, kinetic energy conservation does not appear to be possible on nonuniform
grids when only these operators are used to discretize the incompressible Navier–Stokes
equations. As pointed out by Vasilyev [4], the violation in conservation is related to the
commutation error between the discrete differencing and averaging operators,

δ1φ̄
1x

δ1x
�= δ1φ

1x

δ1x
. (24)

This inequality can be verified by expanding both sides using the operator definitions.
Expanding the left-hand side at the cell-center location [i, j, k, n] yields

δ1φ̄
1x

δ1x

∣∣∣∣
i, j,k,n

= [φ̄1x ]i+1/2, j,k,n − [φ̄1x ]i−1/2, j,k,n

xi+1/2 − xi−1/2

= 1

2

(
φn

i+1, j,k − φn
i−1, j,k

xi+1/2 − xi−1/2

)
.

Expanding the right-hand side at the same location yields

δ1φ
1x

δ1x

∣∣∣∣
i, j,k,n

= 1

2

([
δ1φ

δ1x

]
i+1/2, j,k,n

+
[
δ1φ

δ1x

]
i−1/2, j,k,n

)

= 1

2

(
φn

i+1, j,k − φn
i, j,k

xi+1 − xi
+ φn

i, j,k − φn
i−1, j,k

xi − xi−1

)
=
(

φn
i+1, j,k − φn

i, j,k

xi+3/2 − xi−1/2
+ φn

i, j,k − φn
i−1, j,k

xi+1/2 − xi−3/2

)
.

Here Eq. (21) has been used to express the denominators in terms of the staggered grid
locations. Clearly the operators do not commute. Nor do they commute when expanded
about the staggered location [i + 1/2, j, k, n].

To produce conservative schemes on nonuniform meshes, it is necessary to introduce the
following weighted averaging operators:

φ̄1�x |i, j,k,n ≡
(
xi − xi−1/2

)
φn

i+1/2, j,k + (xi+1/2 − xi
)
φn

i−1/2, j,k

xi+1/2 − xi−1/2
, (25)

φ̄1�x |i, j,k,n ≡
(
xi+1/2 − xi

)
φn

i+1/2, j,k + (xi − xi−1/2
)
φn

i−1/2, j,k

xi+1/2 − xi−1/2
. (26)
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Note that, on uniform meshes, both of these averaging operators reduce to the simple
averaging operator of Eq. (22). Also note that, when evaluated at the cell-center locations,
both of these averaging operators are the same as the simple averaging operator of Eq. (22),
even on nonuniform meshes. This is a result of our definition of cell centers as the geometric
center between face locations in physical space, Eq. (21). When evaluated at the staggered
locations, however, these two operators have quite different interpretations. Equation (25)
is simply the standard linear interpolation. In Eq. (26) the weights are reversed, and it can
be thought of as a volume-weighted average. Both averaging operators will be required in
the following discrete analysis because commutation with the discrete differencing operator
depends on the grid location at which the operator is evaluated. When evaluated at a cell-
center location, Eq. (25) commutes with differencing,

[
δ1φ̄

1�x

δ1x
= δ1φ

δ1x

1�x

= δ1φ

δ1x

1x
]

x-centered

, (27)

where φ in this case represents a variable or expression with a cell-centered x location.
When evaluatd at a staggered location, Eq. (26) commutes with differencing,

[
δ1ψ̄

1x

δ1x
= δ1ψ̄

1�x

δ1x
= δ1ψ

δ1x

1�x
]

x-staggered

, (28)

where ψ represents a variable or expression with a staggered x location. In both Eqs. (27) and
(28) the equivalency between the simple average and the weighted average at cell-centered
locations has been included where appropriate.

The following identities will also be required to derive some relationships later in the
paper. These are nonuniform versions of some of the uniform grid identities presented by
Morinishi [3]. First, two discrete operators in different directions always commute. Note
that one of the “directions” may be time; for example,

δ1φ

δ1t

1x

= δ1φ̄
1x

δ1t
. (29)

Second, when evaluated at a cell-centered x location,

[
ψ

δ1φ

δ1x

1�x

= δ1ψ φ̄1�x

δ1x
− φ

δ1ψ

δ1x

]
x-centered

, (30)

where φ represents a variable or expression with a cell-centered x location, and ψ is a
variable or expression with a staggered x location.

Finally, when evaluated at a staggered location,

[
ψ

δ1φ ψ̄1x

δ1x
= 1

2

δ1φ ψ̃ψ
1x

δ1x
+ 1

2
ψψ

δ1φ

δ1x

]
x-staggered

, (31)

where once again φ and ψ represent cell-centered and staggered expressions respectively.
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3.3. Discretization Equations

Using the discrete operators defined previously, the discretized Navier–Stokes equations
are now presented. At this point, it is convenient to return to Cartesian tensor notation.
The continuity equation is evaluated at the cell-centered location [i, j, k, n + 1] using the
following discretization:

δ1ui

δ1xi
= 0. (32)

The x , y, and z components of the momentum equation are evaluated at the staggered
locations [i + 1/2, j, k, n + 1/2], [i, j + 1/2, k, n + 1/2], and [i, j, k + 1/2, n + 1/2]
respectively using the following discretization:

δ1ui

δ1t
+ δ1u j

1t
1�x i

ui
1t

1x j

δ1x j
+ δ1 p

δ1xi
− δ1τi j

δ1x j
= 0, (33)

τi j = ν̄

(
δ1ui

1t

δ1x j
+ δ1u j

1t

δ1xi

)
, (34)

ν̄ =
{

ν for i = j,

ν̄1xi
1x j

for i �= j.
(35)

Note that xi appearing as a superscript does not follow the summation convention. Clearly
both the mass and momentum equations are in the discrete form of Eq. (19), and thus the
scheme will discretely conserve mass and momentum in space and time.

As pointed out by Morinishi, local kinetic energy cannot be defined unambiguously on
the staggered grid because the velocity components are stored at different locations. The
kinetic energy norm conserved by the present system requires the discrete kinetic energy
equation to be developed about the mesh location [i, j, k, n + 1/2]. The vector dot product
of the velocity with the momentum equation (33) produces the kinetic energy equation
which, including the appropriate discrete second-order interpolations, takes the form

ui
1t

δ1ui

δ1t
+ δ1u j

1t
1�x i

ui
1t

1x j

δ1x j
+ δ1 p

δ1xi

1xi

= 0. (36)

Note that the viscous terms have been omitted. Expanding Eq. (36), we can rearrange each
of the three resulting terms as follows. The time term can be rewritten using the operator
definitions and Eq. (29) as

(Time) = ui
1t δ1ui

δ1t

1xi

, (37)

= δ1ui ui/2

δ1t

1xi

, (38)

= δ1ui ui/2
1xi

δ1t
. (39)
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The convective term can be rewritten using Eqs. (31), (27), (28), and (29) as

(Conv.) = ui
1t δ1u j

1t
1�x i

ui
1t

1x j

δ1x j

1xi

, (40)

= 1

2

δ1u j
1t

1�x i ˜ui
1t ui

1t
1x j

δ1x j

1xi

+ 1

2
ui

1t ui
1t δ1u j

1t
1�x i

δ1x j

1xi

, (41)

= 1

2

δ1u j
1t

1�x i ˜ui
1t ui

1t
1x j

δ1x j

1�x i

+ 1

2
ui

1t ui
1t δ1u j

δ1x j

1t
1�x i

1xi

. (42)

The pressure term can be rewritten using Eqs. (30) and (29) as

(Pres.) = ui
1t δ1 p

δ1xi

1xi

, (43)

= δ1ui
1t p̄1�x i

δ1xi
− p

δ1ui
1t

δ1xi
, (44)

= δ1ui
1t p̄1�x i

δ1xi
− p

δ1ui
1t

δ1xi
. (45)

Because the discrete continuity equation is identically zero, the kinetic energy equation also
takes the discrete form of Eq. (17), and thus the scheme discretely conserves kinetic energy
(in the inviscid limit) in space and time. The conserved norm can be taken from the time term,

K = ui ui/2
1xi

, (46)

evaluated at the cell-centered location [i, j, k, n] or [i, j, k, n + 1].
To summarize, two key elements are required to produce this fully conservative, second-

order-accurate discretization for nonuniform meshes: (1) the convective term must use the
product of the average (midpoint) velocities between the two time levels (this has already
been pointed out by Perot [5]) and (2) to avoid any commutation error with differencing on
the nonuniform mesh, the advecting velocity in the convective term must be interpolated
using a volume-weighted average rather than a simple or linear average.

3.4. Accuracy

Some discussion of the order of accuracy of the scheme is required, as only one of the
three averaging operators, Eq. (25), is formally second-order accurate. The least accurate
averaging operator is Eq. (26)—the volume average—where the truncation error can be
expressed in terms of the local grid spacing �x and grid expansion ratio α as

φ̄1�x = φ + 1

2

∂φ

∂x
(α − 1)�x + O(�x2). (47)

On uniform grids, α = 1, and formal second-order accuracy is recovered. For arbitrary
nonuniform grids, however, the accuracy of the interpolation appears to drop to first order.
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On grids suitable for DNS and LES, however, the grid spacing is generally not arbitrary.
The nonuniform spacing is usually the result of some mapping function f (η) where f is
continuous and smooth and increases monotonically over the range 0 ≤ η ≤ 1:

xi = f (i/N ) i = 0, 1 . . N . (48)

The Taylor series expansion of f about some η = i/N can be used to develop an expres-
sion for an adjacent x value,

xi+1 = f (i/N ) + ∂ f

∂η

1

N
+ 1

2

∂2 f

∂η2

1

N 2
+ O

(
1

N 3

)
. (49)

The difference between Eqs. (48) and (49) yields an approximation for the local grid spacing:

�x ≈ ∂ f

∂η

1

N
. (50)

The expansion ratio α, defined as the ratio between adjacent grid spacings, can also be
approximated using the Taylor series,

α = xi+1 − xi

xi − xi−1
, (51)

=
∂ f
∂η

1
N + 1

2
∂2 f
∂η2

1
N 2 + O

(
1

N 3

)
∂ f
∂η

1
N − 1

2
∂2 f
∂η2

1
N 2 + O

(
1

N 3

) , (52)

≈ 1 +
∂2 f
∂η2

∂ f
∂η

1

N
, (53)

which can be rewritten in terms of �x using Eq. (50):

α ≈ 1 +
∂2 f
∂η2(
∂ f
∂η

)2 �x . (54)

When Eq. (54) is substituted into Eq. (47) it is clear that second-order accuracy is re-
covered for the case of nonuniform grid spacing where the grid distribution is based on a
smoothly varying mapping function.

3.5. Solution Procedure

The fully implicit, nonlinear system of equations resulting from this choice of discretiza-
tion can be quite stiff, particularly on the highly stretched grids typical of LES and DNS
of wall-bounded shear flows. In the present work, the system is solved iteratively at each
time step using Newton linearization and an algebraic multigrid with smoothing based on
the symmetric coupled Gauss–Siedel method of Vanka [8]. The system’s stiffness is han-
dled by coarsening preferentially in the direction of greatest coefficient strength, a multi-
grid technique referred to as semicoarsening [9]. With the judicious selection of coarse
grids, it is possible to reduce the maximum residual by 6 orders of magnitude with about
50 workunits per time step (where 1 workunit is equivalent to one smoothing sweep
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FIG. 2. Time history of total kinetic energy for a 643 periodic box simulation. Initial viscosity ν = 1/2000
was set to zero at t = 3.

through the finest grid). Although relatively expensive per time step when compared to
other DNS/LES solution methods, the present fully implicit system is numerically stable
for any choice of computational time step, and the discrete conservation properties ensure
that the method is free from numerical dissipation.

4. SIMULATIONS IN A PERIODIC BOX

To test the predicted conservation properties of the method, we carried out inviscid
simulations in 1 × 1 × 1 periodic boxes with both uniform and nonuniform grid spacing.
The simulations were initialized with a random solenoidal velocity field and integrated ahead
in time with finite viscosity. At some point the viscosity was set to zero and the equations
were integrated further ahead in time, monitoring the total momentum and kinetic energy.
On both the uniform and the nonuniform grids, both quantities were conserved to machine
accuracy, confirming the predicted conservation properties of the method.

4.1. Energy Spectra

Figure 2 plots the time history of the total kinetic energy for one simulation carried out
on a 643 uniform grid. During the initial viscous part of the simulation (0 < t < 3), the
total kinetic energy is seen to decay rapidly due to viscous dissipation. Figure 3a shows the

FIG. 3. Computed spatial energy spectra from a 643 periodic box simulation. Times refer to Fig. 2. (a) Initial
viscous part of the simulation, (b) inviscid part of the simulation illustrating the eventual equidistribution of energy
among the wave numbers.
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spatial energy spectra calculated at times t = 1, 2, and 3. The spectra show strong drop off
and little or no energy pileup at the highest wave numbers.

At t = 3 the viscosity was set to zero. As Fig. 2 shows, the kinetic energy remains precisely
constant thereafter. It is interesting to note how the energy redistributes itself in wave space
in the absence of viscosity. Figure 3b shows the spatial energy spectra calculated at times
t = 3, 4, 5, 8, and 40. The immediate loss of viscous dissipation causes the energy at the
highest wave numbers to increase rapidly. The net energy transfer is out of the lowest
wave numbers. Eventually, the distribution stabilizes at a point where the energy is equally
distributed in wave space—a condition of maximum entropy for this isolated numerical
system!

4.2. Reversibility

One of the interesting characteristics of the present fully conservative scheme is its
reversibility in the inviscid limit. To investigate this reversibility, an inviscid, periodic box
simulation was restarted from a saved file and solved with a negative computational time
step. No modification to the solution algorithm was required to step backward in time.
Figure 4a shows the time history of the x velocity component at one point in the periodic
box during the forward-time simulation, leading up to the writing of the restart file at t = 35.
Figure 4b compares the velocity at the same point calculated by the reverse-time simulation.
The reverse-time velocity appears qualitatively identical to the forward-time velocity until
about t = 28, when the two traces start to differ noticeably.

FIG. 4. (a) Time trace of velocity at one point in the inviscid periodic box simulation, (b) veocity calculated
at the same point by time-reverse simulation, (c) difference: ε = √

�u2 + �v2 + �w2.
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A quantitative comparison of the difference in calculated velocities at one point, plotted
as Fig. 4c, shows that the eventual departure of the two traces resuts from a relatively steady
amplification of errors. For all inviscid simulations in which reversibility was investigated
(which included several 643 simulations with different total kinetic energies, computational
time step sizes, and convergence criteria) the error amplification could be consistently
characterized as

ε = ε0e
c
√

K
�

t , (55)

where � is the mesh spacing and the constant c is approximately 0.34.

5. DNS OF PLANE CHANNEL FLOW

The first rigorous investigation of the effect of computational time step on the DNS
of turbulent flow was performed relatively recently by Choi and Moin [1]. They used a
fully implicit scheme to conclude that the optimal computational time step for the DNS of
turbulent channel flow, expressed in wall units, was about �t+ = �tu2

τ /ν = 0.4. For time
steps larger than 0.4, their numerical experiments showed the calculated turbulence statistics
to vary significantly from their time-step-independent values. Furthermore, they observed
the turbulence to completely decay to a laminar state for time steps of �t+ = 1.6 or greater.
In conclusion, they suggested the following physical explanation for their observations:
“Turbulence fluctuations can only be sustained if the computational time step is appreciably
less than the Kolmogorov time scale.” They estimated the Kolmogorov time scale in the
sublayer to be about 2.4 wall units.

Using the fully conservative finite difference method of the present work, we repeated the
identical investigation. Following Choi and Moin, the channel domain and grid distribution
was taken from the minimum flow unit of Jiminez and Moin [10], with dimensionsπδ × 2δ ×
0.289πδ in the streamwise, wall-normal, and spanwise directions respectively. The mesh
size (in terms of cells) was 16 × 128 × 32, with uniform spacing in both the streamwise
and spanwise directions, and a hyperbolic tangent distribution in the wall-normal direction,
as described by [10]. All computations were performed at a Reynolds number based on
bulk velocity Reb = Ubδ/ν = 2800, which corresponded to a Reynolds number based on
wall shear velocity of Reτ = uτ δ/ν ≈ 190.

Figure 5 compares the first part of the time history of the plane-averaged wall shear rates
for three different computational time steps. In this case, all simulations started from the

FIG. 5. First part of the time history of plane-averaged wall shear rates for three different computational time
steps, all started from the same initial condition: ——— �t+ = 0.4; · · · · · · · · �t+ = 0.8; — · —. �t+ = 1.2.
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FIG. 6. Variation of root-mean-square velocity fluctuations with the computational time step for (a) present
fully conservative scheme and (b) fractional step scheme with present convective discretization: ———�t+ = 0.4;
- - - - �t+ = 0.8; — · —. �t+ = 1.2; — · · — �t+ = 1.6.

same initial condition—a fully developed turbulent flow from a previous simulation. All
three simulations exhibited quasi-periodic behavior of the wall shear stress, although the
three solutions quickly became uncorrelated.

Figure 6a compares the calculated rms velocity fluctuations for four of the time steps
investigated: �t+ = 0.4, 0.8, 1.2, and 1.6. In terms of CFL number, these computation time
steps correspond approximately to CFL = max(|ui |/�xi ) = 1, 2, 3, and 4. We note that
these seemingly high CFL numbers are due mainly to the turbulence velocity fluctuations
and the relatively fine near-wall grid spacing in the wall-normal direction. Figure 7 compares
the Reynolds shear stress for the same four computational time steps. The total averaging
time for these simulations was about 600U b/δ.

FIG. 7. Variation of Reynolds shear stress with the computational time step for fully conservative scheme:
——— �t+ = 0.4; - - - - �t+ = 0.8; — · — �t+ = 1.2; — · · — �t+ = 1.6.
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FIG. 8. Variation of root-mean-square velocity fluctuations with the computational time step for very large
time steps: ——— time-step-independent result; - - - - �t+ = 3.2; — · —. �t+ = 5.0.

The observed variation in statistical turbulence quantities is significantly smaller than
that reported by Choi and Moin, suggesting that their observations may have been a result
of dissipative numerical errors associated with their scheme. To clarify whether the source
of these errors is related to the difference in the discretization of the convective term (they
used Crank–Nicholson) or to the splitting error caused by the fractional step method, several
additional simulations were run. These additional simulations used their fractional-step time
advancement scheme, but with the convective discretization developed in this paper. Plotted
as Fig. 6b, these results show a similar (although slightly reduced) time step sensitivity to
that observed by Choi and Moin, suggesting that the splitting error is primarily responsible
for the numerical error at large computational time steps. The difference in the convective
discretization appears to be a secondary effect, although apparently not an insignificant one.
For example, it was possible to get a turbulent solution for �t+ = 1.6, a time step at which
Choi and Moin observed the laminarization of the flow.

5.1. Maximum Computational Time Step

It remained to determine how much the computational time step could be increased and
still appear to resolve the turbulence. To investigate this, several additional turbulent plane
channel simulations were performed at computational time steps greater than �t+ = 1.6.
Figure 8 compares the computed rms velocity fluctuations for �t+ = 3.2 and 5.0 to the
time-step-independent result reported earlier. These time steps correspond to CFL ≈ 8 and
12 respectively.

At �t+ = 3.2 the error in rms velocity fluctuations in the streamwise direction was
significant, although the spanwise and wall-normal quantities remained very near their
time-step-independent values. At �t+ = 5.0 it did not appear possible to achieve smooth
statistical results, and all components contained significant errors. Additionally, at these very
large time steps the smoothing sweeps had to be relaxed significantly to ensure convergence,
thus negating any potential computational advantage gained by the increased time step.

6. SUMMARY

A second-order-accurate finite difference discretization of the incompressible Navier–
Stokes was presented that discretely conserves mass, momentum, and kinetic energy (in the
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inviscid limit) in both space and time. The method uses a staggered arrangement of velocity
and pressure on a structured Cartesian grid and retains its discrete conservation properties
for both uniform and nonuniform grid spacing. The predicted conservation properties were
confirmed by inviscid simulations on both uniform and nonuniform grids. The capability
of the method to resolve turbulent flow was demonstrated by repeating the turbulent chan-
nel flow simulations of Choi and Moin [1], where the effect of computational time step
on the computed turbulence was investigated. With the present fully conservative scheme,
turbulent flow solutions were achieved over the entire range of computational time steps in-
vestigated (�t+ = �tu2

τ /ν = 0.4 to 5.0). Little variation in statistical turbulence quantities
was observed up to �t+ = 1.6, corresponding to CFL = 4. The present results differ sig-
nificantly from those reported by Choi and Moin, suggesting that the cause of their observed
sensitivity to computational time step may have been the splitting errors associated with
their fractional-step time advancement scheme, rather than the more physical explanation
they proposed.
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